#include "../common/book.h"
#define N (1024*1024)
#define FULL_DATA_SIZE (N*20)
__global__ void kernel( int *a, int *b, int *c ) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) {
int idx1 = (idx + 1) % 256;
int idx2 = (idx + 2) % 256;
float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
c[idx] = (as + bs) / 2;
}
}
int main( void ) {
cudaDeviceProp prop;
int whichDevice;
HANDLE_ERROR( cudaGetDevice( &whichDevice ) );
HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );
if (!prop.deviceOverlap) {
printf( "Device will not handle overlaps, so no speed up from streams\n" );
return 0;
}
cudaEvent_t start, stop;
float elapsedTime;
cudaStream_t stream;
int *host_a, *host_b, *host_c;
int *dev_a, *dev_b, *dev_c;
// start the timers
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
// initialize the stream
HANDLE_ERROR( cudaStreamCreate( &stream ) );
// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c,
N * sizeof(int) ) );
// allocate host locked memory, used to stream
HANDLE_ERROR( cudaHostAlloc( (void**)&host_a,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
HANDLE_ERROR( cudaHostAlloc( (void**)&host_b,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
HANDLE_ERROR( cudaHostAlloc( (void**)&host_c,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
for (int i=0; i<FULL_DATA_SIZE; i++) {
host_a[i] = rand();
host_b[i] = rand();
}
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
// now loop over full data, in bite-sized chunks
for (int i=0; i<FULL_DATA_SIZE; i+= N) {
// copy the locked memory to the device, async
HANDLE_ERROR( cudaMemcpyAsync( dev_a, host_a+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream ) );
HANDLE_ERROR( cudaMemcpyAsync( dev_b, host_b+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream ) );
kernel<<<N/256,256,0,stream>>>( dev_a, dev_b, dev_c );
// copy the data from device to locked memory
HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream ) );
}
// copy result chunk from locked to full buffer
HANDLE_ERROR( cudaStreamSynchronize( stream ) );
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time taken: %3.1f ms\n", elapsedTime );
// cleanup the streams and memory
HANDLE_ERROR( cudaFreeHost( host_a ) );
HANDLE_ERROR( cudaFreeHost( host_b ) );
HANDLE_ERROR( cudaFreeHost( host_c ) );
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) );
HANDLE_ERROR( cudaStreamDestroy( stream ) );
return 0;
}
這里是單個流來講明流的用法,主要看main函數。
第1件事:選擇1個支持裝備堆疊(Device Overlap)功能的裝備。支持裝備堆疊功能的GPU能夠在履行1個CUDA C核函數的同時,還能在裝備與主機之間履行復制操作。正如前面說的,我們將使用多個流來實現這類計算與數據傳輸的堆疊。
// now loop over full data, in bite-sized chunks
for (int i=0; i<FULL_DATA_SIZE; i+= N) {
// copy the locked memory to the device, async
HANDLE_ERROR( cudaMemcpyAsync( dev_a, host_a+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream ) );
HANDLE_ERROR( cudaMemcpyAsync( dev_b, host_b+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream ) );
kernel<<<N/256,256,0,stream>>>( dev_a, dev_b, dev_c );
// copy the data from device to locked memory
HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream ) );
}
cudaMemcpy() 這個函數將以同步方式履行,說明,當函數返回時,復制操作已完成,并且在輸出緩沖區中包括了復制進去的內容。
cudaMemcpyAsync() 異步,只是放置1個要求,表示在流中履行1次內存復制操作,這個流是通過參數stream來指定的。任何傳遞給cudaMemcpyAsync() 的主機內存指針必須已通過cudaHostAlloc() 分配好內存。只能以異步方式對頁鎖定內存進行復制操作。
#include "../common/book.h"
#define N (1024*1024)
#define FULL_DATA_SIZE (N*20)
__global__ void kernel( int *a, int *b, int *c ) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) {
int idx1 = (idx + 1) % 256;
int idx2 = (idx + 2) % 256;
float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
c[idx] = (as + bs) / 2;
}
}
int main( void ) {
cudaDeviceProp prop;
int whichDevice;
HANDLE_ERROR( cudaGetDevice( &whichDevice ) );
HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );
if (!prop.deviceOverlap) {
printf( "Device will not handle overlaps, so no speed up from streams\n" );
return 0;
}
cudaEvent_t start, stop;
float elapsedTime;
cudaStream_t stream0, stream1;
int *host_a, *host_b, *host_c;
int *dev_a0, *dev_b0, *dev_c0;
int *dev_a1, *dev_b1, *dev_c1;
// start the timers
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
// initialize the streams
HANDLE_ERROR( cudaStreamCreate( &stream0 ) );
HANDLE_ERROR( cudaStreamCreate( &stream1 ) );
// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a0,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b0,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c0,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_a1,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b1,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c1,
N * sizeof(int) ) );
// allocate host locked memory, used to stream
HANDLE_ERROR( cudaHostAlloc( (void**)&host_a,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
HANDLE_ERROR( cudaHostAlloc( (void**)&host_b,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
HANDLE_ERROR( cudaHostAlloc( (void**)&host_c,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
for (int i=0; i<FULL_DATA_SIZE; i++) {
host_a[i] = rand();
host_b[i] = rand();
}
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
// now loop over full data, in bite-sized chunks
for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {
// copy the locked memory to the device, async
HANDLE_ERROR( cudaMemcpyAsync( dev_a0, host_a+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream0 ) );
HANDLE_ERROR( cudaMemcpyAsync( dev_b0, host_b+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream0 ) );
kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 );
// copy the data from device to locked memory
HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c0,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream0 ) );
// copy the locked memory to the device, async
HANDLE_ERROR( cudaMemcpyAsync( dev_a1, host_a+i+N,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream1 ) );
HANDLE_ERROR( cudaMemcpyAsync( dev_b1, host_b+i+N,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream1 ) );
kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 );
// copy the data from device to locked memory
HANDLE_ERROR( cudaMemcpyAsync( host_c+i+N, dev_c1,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream1 ) );
}
HANDLE_ERROR( cudaStreamSynchronize( stream0 ) );
HANDLE_ERROR( cudaStreamSynchronize( stream1 ) );
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time taken: %3.1f ms\n", elapsedTime );
// cleanup the streams and memory
HANDLE_ERROR( cudaFreeHost( host_a ) );
HANDLE_ERROR( cudaFreeHost( host_b ) );
HANDLE_ERROR( cudaFreeHost( host_c ) );
HANDLE_ERROR( cudaFree( dev_a0 ) );
HANDLE_ERROR( cudaFree( dev_b0 ) );
HANDLE_ERROR( cudaFree( dev_c0 ) );
HANDLE_ERROR( cudaFree( dev_a1 ) );
HANDLE_ERROR( cudaFree( dev_b1 ) );
HANDLE_ERROR( cudaFree( dev_c1 ) );
HANDLE_ERROR( cudaStreamDestroy( stream0 ) );
HANDLE_ERROR( cudaStreamDestroy( stream1 ) );
return 0;
}
10.6 GPU的工作調度機制
流可以看作是:有序的操作序列,其中包括內存復制操作、核函數調用。硬件中沒有流的概念,而是包括1個或多個引擎來履行內存復制操作,和1個引擎來履行核函數。這些引擎彼此獨立的對操作進行排隊。
10.7 高效地使用多個CUDA流
如果同時調度某個流的所有操作,那末容易在無意中阻塞另外一個流的復制操作或核函數履行。解決這個問題,在將操作放入流的隊列時應當采取寬度優先方式,而非深度優先方式。也就是說,將這兩個流之間的操作交叉添加。
#include "../common/book.h"
#define N (1024*1024)
#define FULL_DATA_SIZE (N*20)
__global__ void kernel( int *a, int *b, int *c ) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < N) {
int idx1 = (idx + 1) % 256;
int idx2 = (idx + 2) % 256;
float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
c[idx] = (as + bs) / 2;
}
}
int main( void ) {
cudaDeviceProp prop;
int whichDevice;
HANDLE_ERROR( cudaGetDevice( &whichDevice ) );
HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );
if (!prop.deviceOverlap) {
printf( "Device will not handle overlaps, so no speed up from streams\n" );
return 0;
}
cudaEvent_t start, stop;
float elapsedTime;
cudaStream_t stream0, stream1;
int *host_a, *host_b, *host_c;
int *dev_a0, *dev_b0, *dev_c0;
int *dev_a1, *dev_b1, *dev_c1;
// start the timers
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
// initialize the streams
HANDLE_ERROR( cudaStreamCreate( &stream0 ) );
HANDLE_ERROR( cudaStreamCreate( &stream1 ) );
// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a0,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b0,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c0,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_a1,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b1,
N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c1,
N * sizeof(int) ) );
// allocate host locked memory, used to stream
HANDLE_ERROR( cudaHostAlloc( (void**)&host_a,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
HANDLE_ERROR( cudaHostAlloc( (void**)&host_b,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
HANDLE_ERROR( cudaHostAlloc( (void**)&host_c,
FULL_DATA_SIZE * sizeof(int),
cudaHostAllocDefault ) );
for (int i=0; i<FULL_DATA_SIZE; i++) {
host_a[i] = rand();
host_b[i] = rand();
}
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
// now loop over full data, in bite-sized chunks
for (int i=0; i<FULL_DATA_SIZE; i+= N*2) {
// enqueue copies of a in stream0 and stream1
HANDLE_ERROR( cudaMemcpyAsync( dev_a0, host_a+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream0 ) );
HANDLE_ERROR( cudaMemcpyAsync( dev_a1, host_a+i+N,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream1 ) );
// enqueue copies of b in stream0 and stream1
HANDLE_ERROR( cudaMemcpyAsync( dev_b0, host_b+i,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream0 ) );
HANDLE_ERROR( cudaMemcpyAsync( dev_b1, host_b+i+N,
N * sizeof(int),
cudaMemcpyHostToDevice,
stream1 ) );
// enqueue kernels in stream0 and stream1
kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 );
kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 );
// enqueue copies of c from device to locked memory
HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c0,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream0 ) );
HANDLE_ERROR( cudaMemcpyAsync( host_c+i+N, dev_c1,
N * sizeof(int),
cudaMemcpyDeviceToHost,
stream1 ) );
}
HANDLE_ERROR( cudaStreamSynchronize( stream0 ) );
HANDLE_ERROR( cudaStreamSynchronize( stream1 ) );
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time taken: %3.1f ms\n", elapsedTime );
// cleanup the streams and memory
HANDLE_ERROR( cudaFreeHost( host_a ) );
HANDLE_ERROR( cudaFreeHost( host_b ) );
HANDLE_ERROR( cudaFreeHost( host_c ) );
HANDLE_ERROR( cudaFree( dev_a0 ) );
HANDLE_ERROR( cudaFree( dev_b0 ) );
HANDLE_ERROR( cudaFree( dev_c0 ) );
HANDLE_ERROR( cudaFree( dev_a1 ) );
HANDLE_ERROR( cudaFree( dev_b1 ) );
HANDLE_ERROR( cudaFree( dev_c1 ) );
HANDLE_ERROR( cudaStreamDestroy( stream0 ) );
HANDLE_ERROR( cudaStreamDestroy( stream1 ) );
return 0;
}
這個速度更快。