多多色-多人伦交性欧美在线观看-多人伦精品一区二区三区视频-多色视频-免费黄色视屏网站-免费黄色在线

國內最全IT社區平臺 聯系我們 | 收藏本站
阿里云優惠2
您當前位置:首頁 > php開源 > php教程 > 如何繪制caffe網絡訓練曲線

如何繪制caffe網絡訓練曲線

來源:程序員人生   發布時間:2016-07-04 08:26:41 閱讀次數:3024次


本系列文章由 @yhl_leo 出品,轉載請注明出處。
文章鏈接: http://blog.csdn.net/yhl_leo/article/details/51774966


當我們設計好網絡結構后,在神經網絡訓練的進程中,迭代輸出的log信息中,1般包括,迭代次數,訓練損失代價,測試損失代價,測試精度等。本文提供1段示例,簡單講述如何繪制訓練曲線(training curve)。

首先看1段訓練的log輸出,網絡結構參數的那段疏忽,直接跳到訓練迭代階段:

I0627 21:30:06.004370 15558 solver.cpp:242] Iteration 0, loss = 21.6953 I0627 21:30:06.004420 15558 solver.cpp:258] Train net output #0: loss = 21.6953 (* 1 = 21.6953 loss) I0627 21:30:06.004426 15558 solver.cpp:571] Iteration 0, lr = 0.01 I0627 21:30:28.592690 15558 solver.cpp:242] Iteration 100, loss = 13.6593 I0627 21:30:28.592730 15558 solver.cpp:258] Train net output #0: loss = 13.6593 (* 1 = 13.6593 loss) I0627 21:30:28.592733 15558 solver.cpp:571] Iteration 100, lr = 0.01 ... I0627 21:37:47.926597 15558 solver.cpp:346] Iteration 2000, Testing net (#0) I0627 21:37:48.588079 15558 blocking_queue.cpp:50] Data layer prefetch queue empty I0627 21:40:40.575474 15558 solver.cpp:414] Test net output #0: loss = 13.07728 (* 1 = 13.07728 loss) I0627 21:40:40.575477 15558 solver.cpp:414] Test net output #1: loss/top⑴ = 0.00226 I0627 21:40:40.575487 15558 solver.cpp:414] Test net output #2: loss/top⑸ = 0.01204 I0627 21:40:40.708261 15558 solver.cpp:242] Iteration 2000, loss = 13.1739 I0627 21:40:40.708302 15558 solver.cpp:258] Train net output #0: loss = 13.1739 (* 1 = 13.1739 loss) I0627 21:40:40.708307 15558 solver.cpp:571] Iteration 2000, lr = 0.01 ... I0628 01:28:47.426129 15558 solver.cpp:242] Iteration 49900, loss = 0.960628 I0628 01:28:47.426177 15558 solver.cpp:258] Train net output #0: loss = 0.960628 (* 1 = 0.960628 loss) I0628 01:28:47.426182 15558 solver.cpp:571] Iteration 49900, lr = 0.01 I0628 01:29:10.084050 15558 solver.cpp:449] Snapshotting to binary proto file train_net/net_iter_50000.caffemodel I0628 01:29:10.563587 15558 solver.cpp:734] Snapshotting solver state to binary proto filetrain_net/net_iter_50000.solverstate I0628 01:29:10.692239 15558 solver.cpp:346] Iteration 50000, Testing net (#0) I0628 01:29:13.192075 15558 blocking_queue.cpp:50] Data layer prefetch queue empty I0628 01:31:00.595120 15558 solver.cpp:414] Test net output #0: loss = 0.6404232 (* 1 = 0.6404232 loss) I0628 01:31:00.595124 15558 solver.cpp:414] Test net output #1: loss/top⑴ = 0.953861 I0628 01:31:00.595127 15558 solver.cpp:414] Test net output #2: loss/top⑸ = 0.998659 I0628 01:31:00.727577 15558 solver.cpp:242] Iteration 50000, loss = 0.680951 I0628 01:31:00.727618 15558 solver.cpp:258] Train net output #0: loss = 0.680951 (* 1 = 0.680951 loss) I0628 01:31:00.727623 15558 solver.cpp:571] Iteration 50000, lr = 0.0096

這是1個普通的網絡訓練輸出,含有1個loss,可以看出solver.prototxt的部份參數為:

test_interval: 2000 base_lr: 0.01 lr_policy: "step" # or "multistep" gamma: 0.96 display: 100 stepsize: 50000 # if is "multistep", the first stepvalue is set as 50000 snapshot_prefix: "train_net/net"

固然,上面的分析,即使不理睬,對下面的代碼也沒甚么影響,繪制訓練曲線本質就是文件操作,從上面的log文件中,我們可以看出:

  • 對每一個出現字段] Iterationloss =的文本行,含有訓練的迭代次數和損失代價;
  • 對每一個含有字段] IterationTesting net (#0)的文本行,含有測試的對應的訓練迭代次數;
  • 對每一個含有字段#2:loss/top⑸的文本行,含有測試top⑸的精度。

根據這些分析,就能夠對文本進行以下處理:

import os import sys import numpy as np import matplotlib.pyplot as plt import math import re import pylab from pylab import figure, show, legend from mpl_toolkits.axes_grid1 import host_subplot # read the log file fp = open('log.txt', 'r') train_iterations = [] train_loss = [] test_iterations = [] test_accuracy = [] for ln in fp: # get train_iterations and train_loss if '] Iteration ' in ln and 'loss = ' in ln: arr = re.findall(r'ion \b\d+\b,',ln) train_iterations.append(int(arr[0].strip(',')[4:])) train_loss.append(float(ln.strip().split(' = ')[-1])) # get test_iteraitions if '] Iteration' in ln and 'Testing net (#0)' in ln: arr = re.findall(r'ion \b\d+\b,',ln) test_iterations.append(int(arr[0].strip(',')[4:])) # get test_accuracy if '#2:' in ln and 'loss/top⑸' in ln: test_accuracy.append(float(ln.strip().split(' = ')[-1])) fp.close() host = host_subplot(111) plt.subplots_adjust(right=0.8) # ajust the right boundary of the plot window par1 = host.twinx() # set labels host.set_xlabel("iterations") host.set_ylabel("log loss") par1.set_ylabel("validation accuracy") # plot curves p1, = host.plot(train_iterations, train_loss, label="training log loss") p2, = par1.plot(test_iterations, test_accuracy, label="validation accuracy") # set location of the legend, # 1->rightup corner, 2->leftup corner, 3->leftdown corner # 4->rightdown corner, 5->rightmid ... host.legend(loc=5) # set label color host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) # set the range of x axis of host and y axis of par1 host.set_xlim([-1500, 160000]) par1.set_ylim([0., 1.05]) plt.draw() plt.show()

示例代碼中,添加了簡單的注釋,如果網絡訓練的log輸出與本中所列出的不同,只需要稍微修改其中的1些參數設置,就可以繪制出訓練曲線圖。

最后附上繪制出的訓練曲線圖:

train_curve

生活不易,碼農辛苦
如果您覺得本網站對您的學習有所幫助,可以手機掃描二維碼進行捐贈
程序員人生
------分隔線----------------------------
分享到:
------分隔線----------------------------
關閉
程序員人生
主站蜘蛛池模板: 看片一区| 最近最新中文字幕高清中文字幕网 | 日本黄大乳片免费观看 | 99热成人精品国产免国语的 | 国产欧美日韩精品一区二区三区 | 日韩一级片免费 | 亚洲精品国产一区二区三 | 国产日韩亚洲欧洲一区二区三区 | 女人18毛毛片一级毛片 | 老司机午夜免费福利视频 | 亚洲美女影院 | 久草干 | 久草成人在线视频 | 亚洲a毛片| 亚洲综合精品 | 一级女人毛片人一女人 | 人成精品| 私人午夜影院 | 校园春色综合网 | 国产成人久久久精品毛片 | 校园春色 亚洲色图 | 亚洲图片小说区 | 自拍中文字幕 | 亚洲图片校园另激情类小说 | 欧美肥老太太 | h网站在线免费观看 | 最近免费中文字幕大全高清mv | 日本免费网站视频www区 | 国产精品女上位在线观看 | 欧美天天性影院 | 亚洲春色综合另类小说 | 免费观看69xxx视频在线 | 一牛精品视频在线观看免费 | 玖玖视频精品 | 波多野结衣一区2区3区 | 最近免费中文字幕视频高清在线看 | 在线视频 亚洲 | 国产一区二三区 | 可以免费观看一级毛片黄a 可以免费看的黄色网址 | hh99me福利毛片在线看 | 欧美成成人免费 |