You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
此題用動太計劃解決。
遞歸式為:dp[n] = dp[n⑴] + dp[n⑵]
爬到第n層,有兩種途徑,1步從n⑴上來,1下跨兩步從n⑵上來。
即要求出爬到第n層的所以方法,需知道爬到第n⑴層,n⑵層的方法。
關于出發點0層,可以定義為有1種方法,即不動。既不跨1步,也不跨兩步,就到達。
比0層更低的,定義為0種辦法。
這也可看做是Fibonacci求解。
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...