Codeforces 520D. Cubes 貪心模擬
來源:程序員人生 發布時間:2015-04-11 09:25:06 閱讀次數:3964次
每步都取當前穩定的格子里面數字最大或最小的數.
用1個set保護當前可取的格子 *begin 最大 *(--end) 最小
每刪除1個格子都要對這個格子周圍的6個格子進行穩定性檢查
1個格子上面的3個格子肯定了這個格子的穩定性
Once Vasya and Petya assembled a figure of m cubes, each of them is associated with a number between 0 and m?-?1 (inclusive,
each number appeared exactly once). Let's consider a coordinate system such that the OX is the ground, and the OY is
directed upwards. Each cube is associated with the coordinates of its lower left corner, these coordinates are integers for each cube.
The figure turned out to be stable. This means that for any cube that is not on the ground, there is at least one cube under it such that those two cubes touch by
a side or a corner. More formally, this means that for the cube with coordinates (x,?y) either y?=?0,
or there is a cube with coordinates (x?-?1,?y?-?1), (x,?y?-?1) or (x?+?1,?y?-?1).
Now the boys want to disassemble the figure and put all the cubes in a row. In one step the cube is removed from the figure and being put to the right of the blocks that have already been laid. The guys remove the cubes in such order that the figure remains
stable. To make the process more interesting, the guys decided to play the following game. The guys take out the cubes from the figure in turns. It is easy to see that after the figure is disassembled, the integers written on the cubes form a number, written
in the m-ary positional numerical system (possibly, with a leading zero). Vasya wants the resulting number to be maximum possible, and Petya, on the contrary,
tries to make it as small as possible. Vasya starts the game.
Your task is to determine what number is formed after the figure is disassembled, if the boys play optimally. Determine the remainder of the answer modulo 109?+?9.
Output
In the only line print the answer to the problem.
/* ***********************************************
Author :CKboss
Created Time :2015Äê03ÔÂ03ÈÕ ÐÇÆÚ¶þ 23ʱ46·Ö15Ãë
File Name :D.cpp
************************************************ */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long int LL;
const LL mod = 1e9+9;
const int maxn=100100;
struct BOX
{
int x,y,id;
}box[maxn];
typedef pair<int,int> pII;
int n;
map<pII,int> mPI;
set<pII> Pt;
set<int> St;
bool isST(int id)
{
int x=box[id].x;
int y=box[id].y;
pII tp;
/// check (x⑴,y+1)
tp = make_pair(x⑴,y+1);
if(Pt.count(tp)==1)
{
if(Pt.count( make_pair(x⑵,y) )
|| Pt.count( make_pair(x⑴,y) ))
;
else return false;
}
/// check (x,y+1)
tp = make_pair(x,y+1);
if(Pt.count(tp)==1)
{
if(Pt.count( make_pair(x⑴,y) )
|| Pt.count( make_pair(x+1,y) ))
;
else return false;
}
/// check (x+1,y+1)
tp = make_pair(x+1,y+1);
if(Pt.count(tp)==1)
{
if(Pt.count( make_pair(x+1,y) )
|| Pt.count( make_pair(x+2,y) ))
;
else return false;
}
return true;
}
void checkST(int id)
{
if(isST(id))
{
St.insert(id);
}
else
{
if(St.count(id)) St.erase(id);
}
}
void checkround(int id)
{
int x=box[id].x;
int y=box[id].y;
checkST(id);
for(int i=⑴;i<=1;i++) /// dx
{
for(int j=⑴;j<=1;j+=2) /// dy
{
int nx=x+i,ny=y+j;
pII tp = make_pair(nx,ny);
if(Pt.count(tp)==1)
{
int dd=mPI[tp];
checkST(dd);
}
}
}
}
void Remove(int id)
{
int x=box[id].x;
int y=box[id].y;
/// erase
Pt.erase(make_pair(x,y));
St.erase(id);
/// check other stable box
for(int i=⑴;i<=1;i++) // dx
{
for(int j=⑴;j<=1;j+=2) // dy
{
int nx=x+i,ny=y+j;
pII tp = make_pair(nx,ny);
if(Pt.count(tp)==1)
{
int ID=mPI[tp];
checkround(ID);
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
scanf("%d",&n);
for(int i=0;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
box[i]=(BOX){x,y,i};
mPI[make_pair(x,y)]=i;
Pt.insert(make_pair(x,y));
}
/// check stable disassemble box
int mxid=0,miid=0;
for(int i=0;i<n;i++)
{
if(isST(i))
{
St.insert(i);
mxid=max(mxid,i);
miid=min(miid,i);
}
}
vector<int> vi;
for(int loop=0;loop<n;loop++)
{
if(loop%2==0) //find max
{
vi.push_back(mxid);
Remove(mxid);
}
else // find min
{
vi.push_back(miid);
Remove(miid);
}
if(loop==n⑴) continue;
miid=*St.begin();
mxid=*(--St.end());
}
LL ans=0,base=1;
for(int sz=vi.size(),i=sz⑴;i>=0;i--)
{
ans=(ans+base*vi[i]%mod)%mod;
base=(base*n)%mod;
}
cout<<ans%mod<<endl;
return 0;
}
生活不易,碼農辛苦
如果您覺得本網站對您的學習有所幫助,可以手機掃描二維碼進行捐贈