數據結構(C實現)------- 圖的深度優先遍歷
來源:程序員人生 發布時間:2015-01-19 08:22:09 閱讀次數:4354次
[本文是自己學習所做筆記,歡迎轉載,但請注明出處:http://blog.csdn.net/jesson20121020]
算法描寫:
假定給定圖G的初始狀態是所有頂點均未曾訪問過,在G中任選1頂點vi為初始的動身點,則深度優先遍歷可定義以下: 首先訪問動身點vi,并將其標記為已被訪問過;然后,順次從vi動身遍歷vi的每個鄰接點vj,若vj未曾訪問過,則以vj為新的動身點繼續進行深度優先遍歷,直至圖中所有和vi有路徑相通的頂點都被訪問到為止。因此,若G是連通圖,則從初始動身點開始的遍歷進程結束也就意味著完成了對圖G的遍歷。
算法實現:
分別以鄰接矩陣和鄰接表作為圖的存儲結構,給出連通圖的深度優先搜索遍歷的遞歸算法。算法描寫以下:
(1) 訪問動身點vi,并將其標記為已被訪問已訪問過。
(2) 遍歷vi的每個鄰接點vj,若vj未曾訪問過,則以vj為新的動身點繼續進行深度優先遍歷。
完全代碼:
用鄰接矩陣實現深度優先搜索算法源代碼以下:
/**
* 深度遍歷圖
**/
void DFS_MG(MGraph MG,int i){
visit[i] = 1;
printf("%c ",MG.vexs[i]);
int j;
for (j = 1; j <= MG.vexnum;j++){
if(visit[j] == 0 && MG.arcs[i][j] == 1)
DFS_MG(MG,j);
}
}
用鄰接表實現深度優先搜索算法源代碼以下:
/**
* 深度遍歷圖
**/
void DFS_AG(ALGraph AG,int i){
ArcPtr p;
printf("%c ",AG.vertices[i].vexdata);
visit[i] = 1;
p = AG.vertices[i].firstarc;
while( p!= NULL ){
if(visit[p->adjvex] == 0)
DFS_AG(AG,p->adjvex);
p = p->nextarc;
}
}
算法說明:
對具有n個頂點,e條邊的連通圖,算法DFS_MG,DFS_AG
均調用n次。除初始調用是來自外部,基于n⑴次調用均是來自DFS_MG和DFS_AG內部的遞歸調用,用鄰接矩陣實現時,遍歷1個頂點的所有鄰接點需要O(n)時間,則遍歷全部圖需要O(n^2),即DFS_MG的時間復雜度為O(n^2)。
用鄰接表實現時,遍歷n個頂點的所有鄰接點是對邊表節點的掃描1遍,故算法DFS_AG時間復雜度為O(n+e)。
采取深度優先遍歷算法時,都要用到訪問標志,所以該算法的空間復雜度為O(n).
鄰接矩陣實現深度優先搜索算法完全代碼以下:
/*
============================================================================
Name : Graph.c
Author : jesson20121020
Version : 1.0
Description : create Graph using Adjacency Matrix, Ansi-style
============================================================================
*/
#include <stdio.h>
#include <stdlib.h>
#define MAX_VEX_NUM 50
typedef char VertexType;
typedef enum {
DG, UDG
} GraphType;
typedef struct {
VertexType vexs[MAX_VEX_NUM];
int arcs[MAX_VEX_NUM][MAX_VEX_NUM];
int vexnum, arcnum;
GraphType type;
} MGraph;
//設置圖中頂點訪問標志
int visit[MAX_VEX_NUM];
/**
* 根據名稱得到指定頂點在頂點集合中的下標
* vex 頂點
* return 如果找到,則返回下標,否則,返回0
*/
int getIndexOfVexs(char vex, MGraph *MG) {
int i;
for (i = 1; i <= MG->vexnum; i++) {
if (MG->vexs[i] == vex) {
return i;
}
}
return 0;
}
/**
* 創建鄰接矩陣
*/
void create_MG(MGraph *MG) {
int i, j, k;
int v1, v2, type;
char c1, c2;
printf("Please input graph type DG(0) or UDG(1) :");
scanf("%d", &type);
if (type == 0)
MG->type = DG;
else if (type == 1)
MG->type = UDG;
else {
printf("Please input correct graph type DG(0) or UDG(1)!");
return;
}
printf("Please input vexmun : ");
scanf("%d", &MG->vexnum);
printf("Please input arcnum : ");
scanf("%d", &MG->arcnum);
getchar();
for (i = 1; i <= MG->vexnum; i++) {
printf("Please input %dth vex(char):", i);
scanf("%c", &MG->vexs[i]);
getchar();
}
//初始化鄰接矩陣
for (i = 1; i <= MG->vexnum; i++) {
for (j = 1; j <= MG->vexnum; j++) {
MG->arcs[i][j] = 0;
}
}
//輸入邊的信息,建立鄰接矩陣
for (k = 1; k <= MG->arcnum; k++) {
printf("Please input %dth arc v1(char) v2(char) : ", k);
scanf("%c %c", &c1, &c2);
v1 = getIndexOfVexs(c1, MG);
v2 = getIndexOfVexs(c2, MG);
if (MG->type == 1)
MG->arcs[v1][v2] = MG->arcs[v2][v1] = 1;
else
MG->arcs[v1][v2] = 1;
getchar();
}
}
/**
* 打印鄰接矩陣和頂點信息
*/
void print_MG(MGraph MG) {
int i, j;
if(MG.type == DG){
printf("Graph type: Direct graph
");
}
else{
printf("Graph type: Undirect graph
");
}
printf("Graph vertex number: %d
",MG.vexnum);
printf("Graph arc number: %d
",MG.arcnum);
printf("Vertex set:
");
for (i = 1; i <= MG.vexnum; i++)
printf("%c ", MG.vexs[i]);
printf("
Adjacency Matrix:
");
for (i = 1; i <= MG.vexnum; i++) {
j = 1;
for (; j < MG.vexnum; j++) {
printf("%d ", MG.arcs[i][j]);
}
printf("%d
", MG.arcs[i][j]);
}
}
/**
* 初始化頂點訪問標志
**/
void init_Visit(){
int i;
for(i = 0;i < MAX_VEX_NUM;i++)
visit[i] = 0;
}
/**
* 深度遍歷圖
**/
void DFS_MG(MGraph MG,int i){
visit[i] = 1;
printf("%c ",MG.vexs[i]);
int j;
for (j = 1; j <= MG.vexnum;j++){
if(visit[j] == 0 && MG.arcs[i][j] == 1)
DFS_MG(MG,j);
}
}
/**
* 主函數
*/
int main(void) {
MGraph MG;
create_MG(&MG);
print_MG(MG);
printf("The result of DFS:
");
DFS_MG(MG,1);
return EXIT_SUCCESS;
}
鄰接表實現深度優先搜索算法的完全代碼以下:
/*
============================================================================
Name : ALGraph.c
Author : jesson20121020
Version : 1.0
Copyright : Your copyright notice
Description : Graph using linkList, Ansi-style
============================================================================
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#define MAX_VERTEX_NUM 50
typedef enum {
DG, UDG
} GraphType;
typedef char VertexType;
//表節點
typedef struct ArcNode {
int adjvex; //鄰接節點
int weight; //邊權重
struct ArcNode *nextarc; //下1個節點指針
} ArcNode, *ArcPtr;
//頭節點
typedef struct {
VertexType vexdata;
int id;
ArcPtr firstarc;
} VNode;
//頭節點數組
typedef struct {
VNode vertices[MAX_VERTEX_NUM];
int vexnum, arcnum;
GraphType type;
} ALGraph;
int visit[MAX_VERTEX_NUM];
/**
* 根據頂點字符得到在頂點數組中的下標
*/
int getIndexOfVexs(char vex, ALGraph *AG) {
int i;
for (i = 1; i <= AG->vexnum; i++) {
if (AG->vertices[i].vexdata == vex) {
return i;
}
}
return 0;
}
/**
* 創建鄰接表
*/
void create_AG(ALGraph *AG) {
ArcPtr p,q;
int i, j, k, type;
VertexType v1, v2;
printf("Please input graph type UG(0) or UDG(1) :");
scanf("%d", &type);
if (type == 0)
AG->type = DG;
else if (type == 1)
AG->type = UDG;
else {
printf("Please input correct graph type UG(0) or UDG(1)!");
return;
}
printf("please input vexnum:");
scanf("%d", &AG->vexnum);
printf("please input arcnum:");
scanf("%d", &AG->arcnum);
getchar();
for (i = 1; i <= AG->vexnum; i++) {
printf("please input the %dth vex(char) : ", i);
scanf("%c", &AG->vertices[i].vexdata);
getchar();
AG->vertices[i].firstarc = NULL;
}
for (k = 1; k <= AG->arcnum; k++) {
printf("please input the %dth arc v1(char) v2(char) :", k);
scanf("%c %c", &v1, &v2);
i = getIndexOfVexs(v1, AG);
j = getIndexOfVexs(v2, AG);
//根據圖的類型創建鄰接表
//方法1,插入到鏈表頭
/*
if (AG->type == DG) { //有向圖
p = (ArcPtr) malloc(sizeof(ArcNode));
p->adjvex = j;
p->nextarc = AG->vertices[i].firstarc;
AG->vertices[i].firstarc = p;
} else { //無向圖
p = (ArcPtr) malloc(sizeof(ArcNode));
p->adjvex = j;
p->nextarc = AG->vertices[i].firstarc;
AG->vertices[i].firstarc = p;
p = (ArcPtr) malloc(sizeof(ArcNode));
p->adjvex = i;
p->nextarc = AG->vertices[j].firstarc;
AG->vertices[j].firstarc = p;
}
*/
//方法2,插入到鏈表尾
if (AG->type == DG) { //有向圖
p = (ArcPtr) malloc(sizeof(ArcNode));
p->adjvex = j;
//表為空
if(AG->vertices[i].firstarc == NULL){
AG->vertices[i].firstarc = p;
}
else{
//找最后1個表節點
q = AG->vertices[i].firstarc;
while(q->nextarc != NULL){
q = q->nextarc;
}
q->nextarc = p;
}
p->nextarc = NULL;
} else { //無向圖
p = (ArcPtr) malloc(sizeof(ArcNode));
p->adjvex = j;
//表為空
if(AG->vertices[i].firstarc == NULL){
AG->vertices[i].firstarc = p;
}
else{
//找最后1個表節點
q = AG->vertices[i].firstarc;
while(q->nextarc != NULL){
q = q->nextarc;
}
q->nextarc = p;
}
p->nextarc = NULL;
p = (ArcPtr) malloc(sizeof(ArcNode));
p->adjvex = i;
//表為空
if(AG->vertices[j].firstarc == NULL){
AG->vertices[j].firstarc = p;
}
else{
//找最后1個表節點
q = AG->vertices[j].firstarc;
while(q->nextarc != NULL){
q = q->nextarc;
}
q->nextarc = p;
}
p->nextarc = NULL;
}
getchar();
}
}
/**
* 輸出圖的相干信息
*/
void print_AG(ALGraph AG) {
ArcPtr p;
int i;
if (AG.type == DG) {
printf("Graph type: Direct graph
");
} else {
printf("Graph type: Undirect graph
");
}
printf("Graph vertex number: %d
", AG.vexnum);
printf("Graph arc number: %d
", AG.arcnum);
printf("Vertex set :
");
for (i = 1; i <= AG.vexnum; i++)
printf("%c ", AG.vertices[i].vexdata);
printf("
Adjacency List:
");
for (i = 1; i <= AG.vexnum; i++) {
printf("%d", i);
p = AG.vertices[i].firstarc;
while (p != NULL) {
printf("-->%d", p->adjvex);
p = p->nextarc;
}
printf("
");
}
}
/**
* 初始化頂點訪問標志
**/
void init_Visit(){
int i;
for(i = 0;i < MAX_VERTEX_NUM;i++)
visit[i] = 0;
}
/**
* 深度遍歷圖
**/
void DFS_AG(ALGraph AG,int i){
ArcPtr p;
printf("%c ",AG.vertices[i].vexdata);
visit[i] = 1;
p = AG.vertices[i].firstarc;
while( p!= NULL ){
if(visit[p->adjvex] == 0)
DFS_AG(AG,p->adjvex);
p = p->nextarc;
}
}
int main(void) {
ALGraph AG;
create_AG(&AG);
print_AG(AG);
printf("The result of DFS:
");
DFS_AG(AG,1);
return EXIT_SUCCESS;
}
生活不易,碼農辛苦
如果您覺得本網站對您的學習有所幫助,可以手機掃描二維碼進行捐贈