多多色-多人伦交性欧美在线观看-多人伦精品一区二区三区视频-多色视频-免费黄色视屏网站-免费黄色在线

國(guó)內(nèi)最全I(xiàn)T社區(qū)平臺(tái) 聯(lián)系我們 | 收藏本站
阿里云優(yōu)惠2
您當(dāng)前位置:首頁(yè) > 互聯(lián)網(wǎng) > 機(jī)器學(xué)習(xí)算法匯總:人工神經(jīng)網(wǎng)絡(luò)、深度學(xué)習(xí)及其它

機(jī)器學(xué)習(xí)算法匯總:人工神經(jīng)網(wǎng)絡(luò)、深度學(xué)習(xí)及其它

來源:程序員人生   發(fā)布時(shí)間:2014-10-17 04:56:51 閱讀次數(shù):3536次

【編者按】機(jī)器學(xué)習(xí)的算法很多。很多時(shí)候困惑人們都是,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。這里,我們從兩個(gè)方面來給大家介紹,第一個(gè)方面是學(xué)習(xí)的方式,第二個(gè)方面是算法的類似性。本文來自IT經(jīng)理網(wǎng)。


免費(fèi)訂閱“CSDN云計(jì)算”微信公眾號(hào),實(shí)時(shí)掌握第一手云中消息!

CSDN作為國(guó)內(nèi)最專業(yè)的云計(jì)算服務(wù)平臺(tái),提供云計(jì)算、大數(shù)據(jù)、虛擬化、數(shù)據(jù)中心、OpenStack、CloudStack、Hadoop、Spark、機(jī)器學(xué)習(xí)、智能算法等相關(guān)云計(jì)算觀點(diǎn),云計(jì)算技術(shù),云計(jì)算平臺(tái),云計(jì)算實(shí)踐,云計(jì)算產(chǎn)業(yè)資訊等服務(wù)。


以下為原文:

學(xué)習(xí)方式

根據(jù)數(shù)據(jù)類型的不同,對(duì)一個(gè)問題的建模有不同的方式。在機(jī)器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會(huì)考慮算法的學(xué)習(xí)方式。在機(jī)器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個(gè)不錯(cuò)的想法,這樣可以讓人們?cè)诮:退惴ㄟx擇的時(shí)候考慮能根據(jù)輸入數(shù)據(jù)來選擇最合適的算法來獲得最好的結(jié)果。

監(jiān)督式學(xué)習(xí):


在監(jiān)督式學(xué)習(xí)下,輸入數(shù)據(jù)被稱為“訓(xùn)練數(shù)據(jù)”,每組訓(xùn)練數(shù)據(jù)有一個(gè)明確的標(biāo)識(shí)或結(jié)果,如對(duì)防垃圾郵件系統(tǒng)中“垃圾郵件”“非垃圾郵件”,對(duì)手寫數(shù)字識(shí)別中的“1“,”2“,”3“,”4“等。在建立預(yù)測(cè)模型的時(shí)候,監(jiān)督式學(xué)習(xí)建立一個(gè)學(xué)習(xí)過程,將預(yù)測(cè)結(jié)果與“訓(xùn)練數(shù)據(jù)”的實(shí)際結(jié)果進(jìn)行比較,不斷的調(diào)整預(yù)測(cè)模型,直到模型的預(yù)測(cè)結(jié)果達(dá)到一個(gè)預(yù)期的準(zhǔn)確率。監(jiān)督式學(xué)習(xí)的常見應(yīng)用場(chǎng)景如分類問題和回歸問題。常見算法有邏輯回歸(Logistic Regression)和反向傳遞神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)

非監(jiān)督式學(xué)習(xí):


在非監(jiān)督式學(xué)習(xí)中,數(shù)據(jù)并不被特別標(biāo)識(shí),學(xué)習(xí)模型是為了推斷出數(shù)據(jù)的一些內(nèi)在結(jié)構(gòu)。常見的應(yīng)用場(chǎng)景包括關(guān)聯(lián)規(guī)則的學(xué)習(xí)以及聚類等。常見算法包括Apriori算法以及k-Means算法。

半監(jiān)督式學(xué)習(xí):


在此學(xué)習(xí)方式下,輸入數(shù)據(jù)部分被標(biāo)識(shí),部分沒有被標(biāo)識(shí),這種學(xué)習(xí)模型可以用來進(jìn)行預(yù)測(cè),但是模型首先需要學(xué)習(xí)數(shù)據(jù)的內(nèi)在結(jié)構(gòu)以便合理的組織數(shù)據(jù)來進(jìn)行預(yù)測(cè)。應(yīng)用場(chǎng)景包括分類和回歸,算法包括一些對(duì)常用監(jiān)督式學(xué)習(xí)算法的延伸,這些算法首先試圖對(duì)未標(biāo)識(shí)數(shù)據(jù)進(jìn)行建模,在此基礎(chǔ)上再對(duì)標(biāo)識(shí)的數(shù)據(jù)進(jìn)行預(yù)測(cè)。如圖論推理算法(Graph Inference)或者拉普拉斯支持向量機(jī)(Laplacian SVM.)等。

強(qiáng)化學(xué)習(xí):


在這種學(xué)習(xí)模式下,輸入數(shù)據(jù)作為對(duì)模型的反饋,不像監(jiān)督模型那樣,輸入數(shù)據(jù)僅僅是作為一個(gè)檢查模型對(duì)錯(cuò)的方式,在強(qiáng)化學(xué)習(xí)下,輸入數(shù)據(jù)直接反饋到模型,模型必須對(duì)此立刻作出調(diào)整。常見的應(yīng)用場(chǎng)景包括動(dòng)態(tài)系統(tǒng)以及機(jī)器人控制等。常見算法包括Q-Learning以及時(shí)間差學(xué)習(xí)(Temporal difference learning)

在企業(yè)數(shù)據(jù)應(yīng)用的場(chǎng)景下, 人們最常用的可能就是監(jiān)督式學(xué)習(xí)和非監(jiān)督式學(xué)習(xí)的模型。 在圖像識(shí)別等領(lǐng)域,由于存在大量的非標(biāo)識(shí)的數(shù)據(jù)和少量的可標(biāo)識(shí)數(shù)據(jù), 目前半監(jiān)督式學(xué)習(xí)是一個(gè)很熱的話題。 而強(qiáng)化學(xué)習(xí)更多的應(yīng)用在機(jī)器人控制及其他需要進(jìn)行系統(tǒng)控制的領(lǐng)域。

算法類似性

根據(jù)算法的功能和形式的類似性,我們可以把算法分類,比如說基于樹的算法,基于神經(jīng)網(wǎng)絡(luò)的算法等等。當(dāng)然,機(jī)器學(xué)習(xí)的范圍非常龐大,有些算法很難明確歸類到某一類。而對(duì)于有些分類來說,同一分類的算法可以針對(duì)不同類型的問題。這里,我們盡量把常用的算法按照最容易理解的方式進(jìn)行分類。

回歸算法


回歸算法是試圖采用對(duì)誤差的衡量來探索變量之間的關(guān)系的一類算法。回歸算法是統(tǒng)計(jì)機(jī)器學(xué)習(xí)的利器。在機(jī)器學(xué)習(xí)領(lǐng)域,人們說起回歸,有時(shí)候是指一類問題,有時(shí)候是指一類算法,這一點(diǎn)常常會(huì)使初學(xué)者有所困惑。常見的回歸算法包括:最小二乘法(Ordinary Least Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應(yīng)回歸樣條(Multivariate Adaptive Regression Splines)以及本地散點(diǎn)平滑估計(jì)(Locally Estimated Scatterplot Smoothing)

基于實(shí)例的算法


基于實(shí)例的算法常常用來對(duì)決策問題建立模型,這樣的模型常常先選取一批樣本數(shù)據(jù),然后根據(jù)某些近似性把新數(shù)據(jù)與樣本數(shù)據(jù)進(jìn)行比較。通過這種方式來尋找最佳的匹配。因此,基于實(shí)例的算法常常也被稱為“贏家通吃”學(xué)習(xí)或者“基于記憶的學(xué)習(xí)”。常見的算法包括 k-Nearest Neighbor(KNN), 學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ),以及自組織映射算法(Self-Organizing Map , SOM)

正則化方法


正則化方法是其他算法(通常是回歸算法)的延伸,根據(jù)算法的復(fù)雜度對(duì)算法進(jìn)行調(diào)整。正則化方法通常對(duì)簡(jiǎn)單模型予以獎(jiǎng)勵(lì)而對(duì)復(fù)雜算法予以懲罰。常見的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網(wǎng)絡(luò)(Elastic Net)。

決策樹學(xué)習(xí)


決策樹算法根據(jù)數(shù)據(jù)的屬性采用樹狀結(jié)構(gòu)建立決策模型, 決策樹模型常常用來解決分類和回歸問題。常見的算法包括:分類及回歸樹(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機(jī)森林(Random Forest), 多元自適應(yīng)回歸樣條(MARS)以及梯度推進(jìn)機(jī)(Gradient Boosting Machine, GBM)

貝葉斯方法


貝葉斯方法算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。常見算法包括:樸素貝葉斯算法,平均單依賴估計(jì)(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。

基于核的算法


基于核的算法中最著名的莫過于支持向量機(jī)(SVM)了。 基于核的算法把輸入數(shù)據(jù)映射到一個(gè)高階的向量空間, 在這些高階向量空間里, 有些分類或者回歸問題能夠更容易的解決。 常見的基于核的算法包括:支持向量機(jī)(Support Vector Machine, SVM), 徑向基函數(shù)(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等。

聚類算法


聚類,就像回歸一樣,有時(shí)候人們描述的是一類問題,有時(shí)候描述的是一類算法。聚類算法通常按照中心點(diǎn)或者分層的方式對(duì)輸入數(shù)據(jù)進(jìn)行歸并。所以的聚類算法都試圖找到數(shù)據(jù)的內(nèi)在結(jié)構(gòu),以便按照最大的共同點(diǎn)將數(shù)據(jù)進(jìn)行歸類。常見的聚類算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。

關(guān)聯(lián)規(guī)則學(xué)習(xí)


關(guān)聯(lián)規(guī)則學(xué)習(xí)通過尋找最能夠解釋數(shù)據(jù)變量之間關(guān)系的規(guī)則,來找出大量多元數(shù)據(jù)集中有用的關(guān)聯(lián)規(guī)則。常見算法包括 Apriori算法和Eclat算法等。

人工神經(jīng)網(wǎng)絡(luò)


人工神經(jīng)網(wǎng)絡(luò)算法模擬生物神經(jīng)網(wǎng)絡(luò),是一類模式匹配算法。通常用于解決分類和回歸問題。人工神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)的一個(gè)龐大的分支,有幾百種不同的算法。(其中深度學(xué)習(xí)就是其中的一類算法,我們會(huì)單獨(dú)討論),重要的人工神經(jīng)網(wǎng)絡(luò)算法包括:感知器神經(jīng)網(wǎng)絡(luò)(Perceptron Neural Network), 反向傳遞(Back Propagation), Hopfield網(wǎng)絡(luò),自組織映射(Self-Organizing Map, SOM)。學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ)

深度學(xué)習(xí)


深度學(xué)習(xí)算法是對(duì)人工神經(jīng)網(wǎng)絡(luò)的發(fā)展。 在近期贏得了很多關(guān)注, 特別是 百度也開始發(fā)力深度學(xué)習(xí)后, 更是在國(guó)內(nèi)引起了很多關(guān)注。  在計(jì)算能力變得日益廉價(jià)的今天,深度學(xué)習(xí)試圖建立大得多也復(fù)雜得多的神經(jīng)網(wǎng)絡(luò)。很多深度學(xué)習(xí)的算法是半監(jiān)督式學(xué)習(xí)算法,用來處理存在少量未標(biāo)識(shí)數(shù)據(jù)的大數(shù)據(jù)集。常見的深度學(xué)習(xí)算法包括:受限波爾茲曼機(jī)(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網(wǎng)絡(luò)(Convolutional Network), 堆棧式自動(dòng)編碼器(Stacked Auto-encoders)。

降低維度算法


像聚類算法一樣,降低維度算法試圖分析數(shù)據(jù)的內(nèi)在結(jié)構(gòu),不過降低維度算法是以非監(jiān)督學(xué)習(xí)的方式試圖利用較少的信息來歸納或者解釋數(shù)據(jù)。這類算法可以用于高維數(shù)據(jù)的可視化或者用來簡(jiǎn)化數(shù)據(jù)以便監(jiān)督式學(xué)習(xí)使用。常見的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS),  投影追蹤(Projection Pursuit)等。

集成算法


集成算法用一些相對(duì)較弱的學(xué)習(xí)模型獨(dú)立地就同樣的樣本進(jìn)行訓(xùn)練,然后把結(jié)果整合起來進(jìn)行整體預(yù)測(cè)。集成算法的主要難點(diǎn)在于究竟集成哪些獨(dú)立的較弱的學(xué)習(xí)模型以及如何把學(xué)習(xí)結(jié)果整合起來。這是一類非常強(qiáng)大的算法,同時(shí)也非常流行。常見的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進(jìn)機(jī)(Gradient Boosting Machine, GBM),隨機(jī)森林(Random Forest)。

原文鏈接: 機(jī)器學(xué)習(xí)常見算法分類匯總

生活不易,碼農(nóng)辛苦
如果您覺得本網(wǎng)站對(duì)您的學(xué)習(xí)有所幫助,可以手機(jī)掃描二維碼進(jìn)行捐贈(zèng)
程序員人生
------分隔線----------------------------
分享到:
------分隔線----------------------------
關(guān)閉
程序員人生
主站蜘蛛池模板: 久久精品中文 | 亚洲精品视频在线 | 婷婷伊人网 | 国产三级视频在线 | 国产在线观看精品一区二区三区91 | 亚洲视频大全 | 久久精品免费在线观看 | 非洲黑人最猛性xxxx_欧美 | 国产成人乱码一区二区三区 | 一本大道高清香蕉中文大在线 | 精品亚洲456在线播放 | 国产a级午夜毛片 | 日本不卡视频在线 | 亚洲成人观看 | 最近的最新的中文字幕视频 | 性欧美18videofreetubehd黑人 | xx在线 | 国产视频久久久久 | 羞羞视频在线观看入口 | 精品欧美一区二区三区在线 | www.国产成人 | 亚洲最新永久观看在线 | 午夜视频在线观看视频 | 黄色免费网站网址 | 在线观看国产情趣免费视频 | 伊人影院99| www.亚洲精品.com | 久久久久国产精品美女毛片 | 性欧美黑人巨大videos | 91亚洲精品一区二区自 | 日本大片免费一级 | 国内交换一区二区三区 | a中文字幕1区 | 在线看的黄色网址 | 成人国产一区二区三区精品 | 亚洲精品毛片久久久久久久 | 中文字幕无线码欧美成人 | 欧美妇性猛交视频 | 毛片传媒 | 国产一区亚洲二区三区毛片 | 欧美日韩国 |